Fraser Sockeye Planning WS 2014

Options For 2014

<u>Presented to:</u> Fraser Sockeye Planning Workshop <u>Meeting Details:</u> 17 Mar 2014, Richmond Executive Inn <u>Presented by:</u> Gottfried Pestal

Outline

Expectations

- Forecasts
- Expected challenges

Context for 2014 Planning

- Recent spawner abundances
- Recent productivity
- Integrated biological status (WSP)

Options for 2014

- 2 Options
- Expected outcomes by mgmt group
- Expected outcomes by stock

Additional Considerations

- Potential ESSR
- Mgmt adjustment handling
- Cultus recovery objectives

Expectations

Big Picture Expectation

- forecast is for a large total run size
- based on the very large total spawner abundance in the 2010 brood year for all stocks
- Also have indications of better survival to adult since the 2009 return year
- BUT: stock-specific differences

Challenges - 1

Uncertainty in forecasts

- Higher than usual, because for several stocks the brood year abd exceeds previous obs range
- Scotch, Seymour, Harrison, Late Shu and Portage (Not Chilko -> smolt count large but not outside range)

Uncertain en-route mortality

- Tends to be small for Summer (except 1998,2006 and 2013)
- Much larger for other mgmt groups (e.g. 20-30% out of 60% Total Allowable Mortality
- Need to re-estimate regularly in-season (water temp, discharge)

Challenges - 2

Availability of In-season Info

- Abundance est for mgmt groups and larger stocks with current stock ID methodology
- Weekly updates after peak through Area 20

Aggregate harvest of mutiple stocks

- Stocks in a mgmt group can have very different productivities
- Aggregate plan has been constrained to 60% Total Allowable Mortality to protect less productiv stocks

Challenges – 3

Uncertain capacity

- Likely that spawner abundances in 2014 will be large to very large for several of the stocks.
- This raises concerns regarding potential capacity limits of the nursery lakes, but it is difficult to estimate optimal levels of spawner abundance, either as a long-term average or for a specific year.
- Alternative estimates can differ widely, and this uncertainty needs to be taken into account (e.g. when planning ESSR-type fisheries).

Context for 2014 Planning

Recent Spawner Abundances - 1 Table 1

- Wide range of average spawner abd
- Strong fluctuation over time (& cycles)
- WSP lower BM vs. FRSSI BM

Table 2 (Gen Avg)

- 14 of 19 have recent Gen Avg at or above Avg (Gen Avg). Exceptions = Early Stuart, Bowron, Late Stuart, Quesnel, Cultus
- Most stocks at/above FRSSI BM 2 and Above WSP Lower BM

Recent Spawner Abundances - 2 Table 3

- 12 of 19 stocks have recent Gen Avg less than max(Gen Avg), despite 2010 abd
- 5 stocks: recent Gen Avg is highest obs (Scotch, Seymour, Chilko, Harrison, and Late Shuswap)
- 6 of 11 non-cyclic stocks: recent Gen Avg much smaller than the upper end of range for WSP Upper BM.

Productivity

bold = "major contributor of diversity or abundance within a model group"

Integrated Status Evaluation

- Combine multiple metrics (relative abundance, long-term trend, short-term trend) with other information
- Expert workshop with combination of break-out groups and plenary discussions
- Each CU evaluated by multiple groups, then all participants developed a consensus status designation and **commentary**
- => Details in Res Doc: Grant & Pestal (2011)

	Sta	atus	Conservation Unit		Stock
		Red	Takla-Trembleur-EStu	cyclic	Early Stuart
	Red Na		Nadina-Francois-ES		Nadina
		Red*	Taseko-ES		Miscellaneous Early Summers
		Red	Nahatlatch-ES		Miscellaneous Early Summers
		Red	Bowron-ES		Bowron
		Red	Cultus-L		Cultus
		Red	Widgeon – River		Miscellaneous Lates
		R/A	Chilliwack-ES		Miscellaneous Early Summers
		R/A	Francois-Fraser-S		Stellako
		R/A	Quesnel-S	cyclic	Quesnel
		R/A	Takla-Trembleur-Stuart-S	cyclic	Late Stuart
		Amber	North Barriere-ES		Fennel & Miscellaneous Early Summer
		Amber	Anderson-Seton-ES	cyclic	Gates
		Amber	er Kamloops-ES		Raft & Miscellaneous Early Summers
		Amber	Harrison (U/S)-L		Weaver
		A/G	Pitt-ES		Pitt
		A/G	Shuswap-ES	cyclic	Scotch, Seymour, Misc.E.Sum.
		Green*	Chilko-S & Chilko-ES agg.		Chilko
		Green*	Lillooet-Harrison-L		Birkenhead
		Green	Shuswap Complex-L	cyclic	Late Shuswap
		Green	Harrison – River		Harrison
		Green	Harrison (D/S)-L		Miscellaneous Lates

	?	DD	Chilko-ES		Chilko
--	---	----	-----------	--	--------

? Undet. Seto	on-L cy	yclic S	Seton
---------------	---------	---------	-------

Break for Discussion

Options for 2014

Description

Option 1 – Like Cycle Year

 Same TAM rules as in 2010, except that the Fishery Reference Points were adjusted (Raft, Harrison, and North Thompson now part of Summer)

Option 2 – Increase TAM Cap

- Increase TAM cap to 65% due to large expected run size for Early Summer, Summers and Lates.
- Lower FRP stay the same, but Upper FRP increase due to the gradual increase in TAM until it reaches the cap.

Illustration of 2 Options

Option Details

Option 1 – Like Cycle Year

	Harvest Rule Parameters				
	Low Abundance		Lower Fishery	Upper Fishery	
Management Unit	ER (LAER)	ТАМ Сар	Reference Point	Reference Point	Pre-season pMA
Early Stuart	10%	60%	108,000	270,000	0.67
Early Summer (w/o misc)	10%	60%	180,000	450,000	0.43
Summer (w/o misc)	10%	60%	1,020,000	2,550,000	0.10
Late (w/o misc)	20-30%	60%	1,100,000	2,750,000	0.61

Option 2 – Increase TAM Cap

	Harvest Rule Parameters							
	Low Abundance			Lower Fishery	Upper Fishery			
Management Unit	ER (LAER)	ТАМ Сар		Reference Point	Reference Point	Pre-season pMA		
Early Stuart	1	0%	60%	108,000	270,000	0.67		
Early Summer (w/o misc)	1	0%	65%	180,000	514,286	0.43		
Summer (w/o misc)	1	0%	65%	1,020,000	2,914,286	0.10		
Late (w/o misc)	20-3	0%	65%	1,100,000	3,142,857	0.61		

Changes since 2010

For both options

- Early Stuart TAM rule changed based on FN feedback
- Harrison -> Summer -> Miscellaneous
- Raft & North Thompson -> Summer

Expected Outcomes By Management Group

Early Stuart - 1

* ER = expected ER based on TAM, expected Mgmt Adj, and applying Low Abd ER

Early Stuart - 2

Run Size (1,000s)

Early Stuart - 3

At low run size, expected spawners is less than the spawner target resulting from the TAM rule, because of en-route mortality and the Low Abd ER. At larger run sizes, all of the en-route mortality can be absorbed in the Total Allowable Mortality, and the spawner target can be achieved.

Early Stuart - 4 Same TAM rule under Option 1 and 2

	Pre-season Forecast	Return			
	p10	p25	p50	p75	p90
forecast	132,000	189,000	299,000	476,000	709,000
TAM Rule (%)	18%	43%	60%	60%	60%
Escapement Target	108,000	108,000	119,600	190,400	283,600
MA	72,400	72,400	80,100	127,600	190,000
Esc. Target + MA	180,400	180,400	199,700	318,000	473,600
LAER	10%	10%	10%	10%	10%
ER at Return	0%	5%	33%	33%	33%
Allowable ER	10%	10%	33%	33%	33%
available harvest	13,200	18,900	99,300	158,000	235,400
2014 Performance					
Projected S (after MA)	71,000	102,000	120,000	190,000	284,000
BY Spawners	60,300	60,300	60,300	60,300	60,300
Proj. S as % BY S	118%	169%	199%	315%	471%
cycle avg S	36,500	36,500	36,500	36,500	36,500
Proj. S as % cycle S	195%	279%	329%	521%	778%

Early Stuart - Table

	Pre-season Forecast R	Return	
	p10	p25	p50
forecast	132,000	189,000	299,000
TAM Rule (%)	18%	43%	60%
Escapement Target	108,000	108,000	119,600
MA	72,400	72,400	80,100
Esc. Target + MA	180,400	180,400	199,700
LAER	10%	10%	10%
ER at Return	0%	5%	33%
Allowable ER	10%	10%	33%
available harvest	13,200	18,900	99,300
2014 Performance			
Projected S (after MA)	71,000	102,000	120,000
BY Spawners	60,300	60,300	60,300
Proj. S as % BY S	118%	169%	199%
cycle avg S	36,500	36,500	36,500
Proj. S as % cycle S	195%	279%	329%

Early Summer – Option 1

* ER = expected ER based on TAM, expected Mgmt Adj, and applying Low Abd ER

Summer – Option 1

* ER = expected ER based on TAM, expected Mgmt Adj, and applying Low Abd ER

Late – Option 1

* ER = expected ER based on TAM, expected Mgmt Adj, and applying Low Abd ER

Summary - Early Stuart

- Forecast well over Upper FRP
- Exp Spn well over brood year and cycle line avg, even after large expected en-route mortality (absorbed in TAM)

Summary - Early Summer

- At low end of forecast, exp spn well below brood year but around or above cycle line avg (under both options
- At mid-point of forecast, exp spn about ½ of brood year (but 5 times cycle line avg)
- Forecast clearly about Upper FRP (even at p10)
- Substantial share of TAM is taken up by en-route mortality, resulting in lower target ER

Summary - Summer

- At low end of forecast, exp spn well below brood year but around or above cycle line avg (under both options
- At mid-point of forecast, exp spn about ½ of brood year (but 2 times cycle line avg)
- Forecast range mostly above Upper FRP (p25)
- Usually low en-route mortality, so target ER is close to TAM

Summary - Late

- At lower half of forecast range, exp spn well below brood year
- But: exp spn at or above cycle line average for most of the forecast range (p25 and up), for both options
- Forecast clearly about Upper FRP (even at p10)
- Substantial share of TAM is taken up by en-route mortality, resulting in lower target ER

Expected Outcomes By Stock

Proj 2014 Spn - Option 1Proj 2014 Spn - Option 2

Summer

Proj 2014 Spn - Option 1Proj 2014 Spn - Option 2

Late

Birkenhead Spawners	MMM	
Cultus Spawners	Multimo	
Portage Spawners		
Weaver Spawners		
L. Shuswap Spawners	Mumml}	

Summary – Stock Specific

- 18 of 19 stocks with exp spn near or above longterm median and cycle line average (except Cultus)
- Several stocks with exp spn much larger than long-term median (up to 400 times larger) and clearly larger than cyce average (5-10 times) These are Scotch, Seymour, Quesnel, Harrison, and Late Shuswap
- 12 of 19 stocks below max(obs spn)
- 7 stocks with exp spn larger than any previous observed. These are Scotch, Seymour, Stellako, Birkenhead, Portage, Weaver, Late Shuswap

Break for Discussion

Additional Considerations

Potential ESSR Fisheries

Considerations

- Limiting factor (spawning hab or rearing lake?)
- Capacity estimate for limiting factor
- Buffer above capacity estimate (uncertainty)
- Implementation

Handling Management Adjustments

Options to consider?

Cultus Recovery Objectives

Inputs

- Forecasted abundance
- En-route mortality level
- Pre-spawn mortality level

Challenge

 Identify maximum ER that would meet formal recovery objectives, assuming a pre-spawn mortality of about 40%

Cultus Recovery Objectives

	Cultus run s	size (in-sea	ason, will	use Lates	as a proxy	n				
рМА	7,000	8,000	9,000	10,000	11,000	12,000	13,000	14,000	15,000	16,000
0.43	20%	20%	20%	22%	29%	35%	40%	44%	44%	44%
0.47	20%	20%	20%	20%	27%	33%	38%	43%	44%	44%
0.52	20%	20%	20%	20%	25%	31%	36%	41%	44%	44%
0.56	20%	20%	20%	20%	23%	29%	34%	39%	43%	44%
0.61	20%	20%	20%	20%	20%	27%	32%	37%	41%	44%
0.67	20%	20%	20%	20%	20%	24%	30%	35%	39%	43%
0.72	20%	20%	20%	20%	20%	22%	28%	33%	37%	41%
0.79	20%	20%	20%	20%	20%	20%	25%	30%	35%	39%
0.85	20%	20%	20%	20%	20%	20%	22%	28%	33%	37%
0.92	20%	20%	20%	20%	20%	20%	20%	25%	30%	34%

pMA = Percent Managament Adjustment

Feedback from Tier 3 meeting (March 17, 2014)

Ideas Raised on March 17

- At larger run sizes would like to have seen larger increases in TAM rule to 70% ER or higher.
- Should consider capping the escapement target for the aggregates at some level so they do not increase to levels well above those seen in the past.
- May want to implement the MA differently at very large run sizes especially when the MA results in little or no TAC.